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Abstract 
Parallel ray casting volume rendering is implemented and tested on an IBM Blue Gene distributed memory 
parallel architecture. Data are presented from experiments under a number of different conditions, including 
dataset size, number of processors, low and high quality rendering, offline storage of results, and streaming of 
images for remote display. Performance is divided into three main sections of the algorithm: disk I/O, rendering, 
and compositing. The dynamic balance between these tasks varies with the number of processors and other 
conditions. Lessons learned from the work include understanding the balance between parallel I/O, computation, 
and communication within the context of visualization on supercomputers, recommendations for tuning and 
optimization, and opportunities for scaling further in the future. Extrapolating these results to very large data 
and image sizes suggests that a distributed memory HPC architecture such as the Blue Gene is a viable platform 
for some types of visualization at very large scales. 
 
Categories and Subject Descriptors (according to ACM CCS): I3.1 [Hardware Architecture]: Parallel processing, 
I3.2 [Graphics Systems]: Distributed / network graphics, I3.7 [Three-Dimensional Graphics and Realism]: 
Raytracing, I3.8 [Applications]  

 
 
1. Introduction 
 
As data sizes and supercomputer architectures grow 
towards the petascale and beyond, an attractive alternative 
to rendering on graphics clusters is to perform software-
based visualization directly on parallel supercomputers. 
Benefits include the elimination of data movement between 
computation and visualization architectures, the economies 
of large scale, tightly coupled parallelism, and the 
possibility to perform in situ visualization. This paper 
examines the second contribution, large numbers of tightly 
connected processor nodes, within the context of a parallel 
ray casting volume rendering algorithm implemented on 
the IBM Blue Gene/P (BG/P) architecture at Argonne 
National Laboratory (ANL).  

Volume rendering and parallel volume rendering on 
supercomputers has been published extensively in the 
literature, but this is the first such study conducted on 
BG/P, a modern supercomputer representative of others in 
its class. This research profiles and identifies bottlenecks in 
the rendering pipeline and suggests modifications to the 
parallel rendering algorithm to achieve scalability, and it 
offers a glimpse of the optimal balance between I/O, 
computation, communication, and interactivity 
requirements within the setting of parallel volume 
rendering on the BG/P. 

The experiments include several different test conditions, 
including small to medium size data sets, real-time 
streaming of output images and offline storage of results, 

and both low and high quality renderings. From the results, 
one can draw several conclusions about how to best 
leverage the strengths of this architecture in visualization 
applications. Although the results are specific to a 
particular algorithm and architecture, the lessons learned 
can potentially apply more broadly to other supercomputer 
architectures that share some of the same characteristics as 
the Blue Gene, and to other parallel rendering algorithms as 
well. 

Thus far, we have successfully scaled efficiently up to 
512 cores, and tested out to 4096 cores. Remote streaming 
of a small, time-varying dataset at sub-second frame times 
was demonstrated. For the data sizes that we currently have 
available, performance is comparable to other methods and 
architectures, but we expect that the real benefits of this 
method will be apparent at still larger scales, for example, 
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Figure 1: Visualization of the early stages of 
supernova collapse. 



when the size of the data exceeds one billion voxels; image 
resolution is on the order of one million pixels, and the 
number of cores exceeds several thousand processors. 
Research is ongoing, and the goal of our future work is to 
measure performance at these scales. 
 
2. Background 
 
Dataset 
 
The dataset shown in Figure 1 is one time step from a 
supernova simulation, made available by John Blondin at 
the North Carolina State University and Anthony 
Mezzacappa of Oak Ridge National Laboratory [1], 
through the US Department of Energy's SciDAC Institute 
for Ultrascale Visualization [2]. The model seeks to 
discover the mechanism behind the core-collapse 
supernova, which is the violent death of short-lived, 
massive stars. A spherical accretion shock instability, or 
SASI, is driven by the response of an initially spherical 
shock wave to global acoustic modes trapped in the 
interior.  

Visualization plays a key role in understanding the origin 
of this instability of the supernova shock wave, which 
allows scientists to quickly visualize different combinations 
of variables or isolate features by manipulating the 
transparency of the rendered data. In this dataset, a single 
scalar variable, angular momentum, is stored at uniform, 
structured grid locations. Each of two hundred time steps of 
time-varying data is stored in a separate file. Files are 
stored in raw, binary format, in 32-bit floating-point 
format. 
 
Algorithm 
 
Parallel volume rendering algorithms have been well 
documented in the literature. Beginning with Levoy’s 
classic ray casting in 1987 [3] and optimizations in 1990 
[4], parallel versions began to appear in 1993 with [5] and 
[6].  More recently, Yu demonstrated that parallel volume 
rendering performance can be further improved by 
overlapping simulation with visualization [7]. Parallel 
volume rendering has also been studied within the context 
of cluster computing [8] and in standard visualization 
toolkits such as VTK [9], ParaView [10], and VisIt [11], 
[12]. 

Our implementation uses post classification after trilinear 
interpolation, includes lighting [13], [14], and is optimized 
for early ray termination based on maximum opacity and 
blank voxel regions. Sort-last parallelization occurs both in 
object space and in image space. The dataset is divided into 
n approximately equal size partitions, where n is the 
number of processes. Each process computes a completed 
sub-image corresponding to its local data, including local 
front-to-back compositing of samples along each ray of its 
local subimage using the “over” operator [15] and early ray 
termination.  

Stompel et al. [16] provide an overview of various 
methods for sort-last compositing of the n sub-images, and 
Cavin et al. [8] analyze relative theoretical performance of 
these methods. These overviews show that compositing 
algorithms usually fall into one of the following categories: 
plain or optimized direct send, plain or optimized tree, and 

parallel pipeline. The direct send approach is easiest to 
understand; each process requests the sub-images from all 
of those processes that have something to contribute to it 
[17], [18], [19]. Since the possibility for network 
contention is high in direct send, the SLIC [16] 
optimization attempts to schedule communication. 

Rather than sending compositing data monolithically, 
tree methods exchange data between pairs of processes, 
building larger completed subimages at each level of the 
compositing tree. To keep more processes busy at higher 
levels on the tree, Ma et al. introduced the binary swap 
optimization [20]. Lee et al. discuss a parallel pipeline 
compositing algorithm in [21] for polygon rendering, 
although this seldom appears in the context of parallel 
volume rendering. 

For simplicity and a high degree of parallelism, we use 
the direct send compositing approach. After all n processes 
complete their subimages, the total image space is divided 
among n processes as well, so that each process now 
contains 1/n of the total data volume and is responsible for 
1/n of the total image area. Finally, all of the finished, 
composited subimages are sent to a single root process that 
tiles them into a final image, which can either be stored to 
disk or streamed to a remote display location. 

The time to write the final image is not significant for the 
image sizes tested, so we choose to ignore the time to write 
the final output image to disk, and define the time that a 
frame takes to complete as the time from the start of 
reading the time step from disk to the time that the final 
image is ready at the root process. This frame time has 
three distinct components, and for a given data size, the 
relative contribution of each component to the total time 
depends on the number of processes: 

 
tframe = tio + trender + tcomposite (1) 

 
The I/O time, tio, is the length of time required by a 

collective reading of the time step data file by all processes 
simultaneously. The rendering time, trender, is the time that it 
takes for all processes to complete their local subimage 
rendering. The compositing time, tcomposite, is the time to 
composite all subimages into a single image on a single 
process. The following section describes the 
implementation of each component in more detail.  

Before the execution of the first frame, a one-time 
initialization step allocates data structures and determines 
partitioning parameters; static load balancing is used. The 
time for this setup is on the order of tens of seconds, and 
because it occurs only once, we omit it from the frame 
time. 
 
Blue Gene architecture 
 
The Blue Gene/L and Blue Gene/P systems at ANL provide 
ample opportunities to experiment with parallel rendering. 
This work began with 2048 cores of the BG/L system and 
has scaled so far up to 4096 cores on the BG/P system. The 
current single rack of BG/P is for testing and development, 
but in the near future, ANL’s BG/P system will contain 
128K cores. Online documentation from IBM can be found 
at [22]; the reader is directed there for specifications and 
configuration diagrams. For our purposes, the key 
differences between the older BG/L and the new BG/P are 



that BG/P provides twice as many cores, twice the memory 
footprint, approximately a 2X faster interconnect network, 
and a 1.2X faster clock speed per core.  

Processor cores are grouped together into nodes; the 
BG/P has 4 cores per node. Within a node, the cores can 
operate together to execute one user process, in pairs for 
two processes, or independently for four user processes, 
depending on the selected mode. Application processes 
execute on top of a micro-kernel that provides basic OS 
services. The Blue Gene architecture has two separate 
interconnection networks – a 3D torus for inter-process 
point-to-point communication, and a tree network for 
collective operations as well as for communicating with I/O 
nodes. BG/P there has one I/O node for every 64 compute 
nodes. At the front end, the machine has four login nodes 
that support full Linux functionality. 
 
3. Implementation 
 
I/O 
 
Our volume rendering application is written using MPI for 
both communication and I/O, and executes with one MPI 
process on each core. MPI-2 [23] (a.k.a. MPI-IO) collective 
file read calls perform data staging, tio in equation 1, 
allowing each process to read its own portion of the volume 
in parallel with all of the other processes [7], [24]. This is 
more efficient than a single master process reading the 
entire dataset and distributing it to slave processes, and 
more importantly for large datasets, it does not require a 
single process to be able to fit the entire dataset into its 
memory.  

For example, the largest dataset tested to date in this 
work consists of 8643 voxels, or approximately 2.5 GB per 
time step. This is problematic for most workstations; even 
the BG/P has only 2GB of memory per node. However, 
with collective I/O, the total memory footprint of the entire 
machine, not just of one node, is the upper bound on the 
maximum data size that can be processed in-core. This 
memory limit on the current single-rack BG/P is 2TB, and 
will grow to 64 TB when the system is complete. 

Underlying the MPI-2 collective I/O interface is a PVFS 
parallel file system [25]. By striping data across multiple 
volumes controlled by a number of file servers, application 
programs can access non-contiguous regions of a file in 
parallel.  Performance varies depending on whether reads 
or writes are executed (reads in our case), on the number of 
I/O nodes being used, and on the size of the partition that 
each process reads. These issues will be revisited in next 
section as the key relationships between application 
performance and I/O throughput are exposed. 

BG/P is still a new system undergoing development, and 
this holds true for its PVFS deployment, which has only 
been functioning for a short time as of this writing. 
Therefore, it is largely un-tuned and I/O throughput is 
expected to increase dramatically in the future.  Even 
though our research is sometimes limited by currently 
available hardware capabilities, the early testing of this 
application is assisting both the BG/P and PVFS teams to 
expose and correct implementation problems. 

When using PVFS, in particular when performance 
testing an application, it is important to realize that PVFS is 
a shared resource. Unlike the Blue Gene’s compute nodes 

that start each job with a clean kernel and are dedicated to 
only one job, PVFS serves the entire machine and the login 
nodes as well. This means that PVFS performance for a 
given application is dependent on the total load of the 
system. We can see this in repeated trials of the same 
configuration; trender and tcomposite repeat consistently, but tio 
can vary depending on total I/O load. In our timing 
measurements, we have taken care to restrict other’s PVFS 
usage, and confirmed results over multiple trials, but it 
should be remembered that I/O performance could vary in 
the context of everyday usage. 
 
Rendering 
 

The computation of local subimages, trender in equation 1, 
is embarrassingly parallel – that is, it requires no inter-
process communication and scales linearly with n. Its per-
core performance is a function of the efficiency of the Blue 
Gene’s compute node: clock speed, pipeline architecture, 
cache coherence, and the extent to which the code is tuned 
to optimize these features. Compiler optimizations thus far 
have netted 2X performance gains in trender. 

We are currently evaluating low-level performance 
counters to gauge the use of BG/P’s double-hummer 
pipeline, but do not yet have a conclusive metric of the 
percentage of its use in this code. Another possibility we 
are considering is the storage in memory of the dataset as 
double precision instead of single precision, together with 
associated compiler directives concerning quad-word data 
alignment. This could better exploit IBM’s double hummer 
dual floating unit, but it is unclear whether potential gains 
will be offset by the expanded memory requirements. 

Peak FLOPS rates are theoretical and can be misleading. 
For example, measurements indicate the compute kernel 
running at approximately 200 MFLOPS per core, or 6% of 
the advertised 3.4 GFLOPS peak per core on BG/P. This is 
not surprising for actual code that contains loops, branches, 
etc. Performance tuning of the computation kernel is an 
ongoing aspect of this research. 
 
Compositing 
 

Compositing of parallel volume rendered subimages, 
tcomposite in equation 1, is implemented with direct send as 
follows. At the point of completion of the render stage and 

 

 
Figure 2: Direct-send compositing divides both the 
object space and image space among processes. 
 



just prior to the beginning of compositing, each of the n 
processes owns a completed sub-image of its portion of the 
dataset. Next, each of the n processes is assigned 
responsibility for 1/n of the final image area as well. For 
example, the final image can be divided into n scan lines or 
rectangles. There is no spatial correspondence between the 
location and size of a process’ currently completed 
subimage from the rendering step, and the portion of the 
final image that the process is responsible for compositing 
during the compositing step. 

For example, consider the 9-process 2D example in 
Figure 2. The squares represent the volume divided into 9 
subvolumes, and the line along the bottom represents the 
image divided into 9 regions. (The image need not be 
aligned with the subvolume axes.) Looking at process P2, it 
is responsible for one subvolume and one portion of the 
image. Through a global data structure that all processes 
share, P2 knows that it must get the subimages from P6, 
P3, and P0, composite them in front-to-back order, to form 
its portion of the final image. Equations 2 and 3 recursively 
compute color and opacity during compositing, 

 
i =   ( 1.0  –  aold) * inew + iold  (2) 
a = ( 1.0  –  aold) * anew + aold  (3) 

 
Where i represents the intensity (r,g,b) premultiplied by its 
associated alpha-value, and a represents the accumulated 
alpha-value or opacity.  

The last step is for processes P1 thru P8 to send their 
final results to process P0, which tessellates them together 
into one image. The average communication complexity of 
tcomposite is O(n4/3 + n). The first term, n4/3, is because on 
average, n1/3 messages must be sent to each of n recipients 
in order for the n processes to composite their portion of 
the final image. The second term, n, represents the 
gathering of final subimages at the root process. 
 
Streaming and Prefetching 
 

When resulting images are streamed to a remote display 
device, rather than being stored on disk, the path requires 

several steps. This is because the Blue Gene connects to the 
outside world only through the front-end login nodes. So, 
to send an image from one of the compute nodes, it first 
passes via a socket to the IP address of one of the login 
nodes. Physically, it actually travels from the compute node 
to the I/O node assigned to that compute node, and from the 
I/O node to the login node, but the connection between 
compute node and associated I/O node is transparent to the 
programmer. Finally, a daemon running on the login node 
forwards the data stream to the remote display via a 
separate socket connection. The connectivity is 
diagrammed in Figure 3. 

Prefetching of time steps can be harnessed when the 
optimal number of cores is significantly less than the total 
number available. For example, when processing 3003 data 
in order to stream images to a remote site, the optimal 
number of cores dedicated to one frame was 512. 
Therefore, the balance of the machine can be applied 
toward processing the next or several next time steps. This 
results in a multi-pipe application structure, as in Figure 4. 
Each of the pipes functions independently according to the 
previous description. In the example of Figure 4, four 
separate sockets send images out of the Blue Gene to a 
remote display. A token is passed between the pipes to 
ensure that images are sent in order. The receiving graphics 
application regulates frame rate so that images appear on 
the screen at a constant rate. 
 
4. Performance data 
 

In November 2007, real-time streaming of the volume 
rendering application from BG/L was demonstrated, 
generating and streaming a series of 200 time steps 
repeatedly from ANL in Chicago, Illinois to the 
Supercomputing conference exhibit floor in Reno, Nevada. 
A single time step is 103 MB, and over the course of the 
one-hour demo, approximately 500 GB of data was 
processed in real time. The optimal setting for this data size 
was 512 cores. Figure 5 shows more recent tests of the 
same data on BG/P, out to 4K processes.  

 
Figure 3: Connecting a compute node to a remote 
display is a several-step process. 

 
 
Figure 4: Processing several frames simultaneously can 
extend the degree of parallelism. 
 



The BG/P is capable of executing one, two, or four 
processes per node. In IBM terminology, these are called 
smp mode, dual mode, vn mode, respectively. In smp 
mode, one core performs computation while the other cores 
idle, with the exception of low-level OS tasks. The total 
memory footprint of 2GB per node is shared among the 
four cores in smp mode.  

Our tests show approximately 10% slower performance 
in dual and vn modes, compared to smp mode. The largest 
increase is in tio, because the number of I/O nodes assigned 
to a job is a fraction of the number of compute nodes, not 
compute cores. On the BG/P, this number is 64 compute 
nodes to one I/O node. Using twice as many compute nodes 
means that twice as many I/O nodes are available for tio. 

Figure 6 compares the contribution to tframe of each of tio, 
trender, and tcomposite for the same 3003 dataset on BG/P. It is 
clear that I/O time dominates beyond 64 processes, but this 
plot of absolute times actually masks some important 
features. It would appear that trender drops so quickly and 
that tcomposite grows so slowly that it does not make sense to 
optimize them. Both of these assumptions are proved false 
by Figure 7, which shows the same performance data 
plotted as relative percentages of the total time, tframe.  

 From Figure 7, we see that at smaller numbers of 
processes, rendering time dominates the frame time, but I/O 
cost dominates beyond 64 processes. This underlines the 

need to further optimize parallel I/O operation on BG/P. 
Rendering time decreases more slowly as a percentage of 
the total time, compared to Figure 6, and is a significant 
concern out to at least 2048 processes. Compositing time is 
still a relatively small fraction of the total time, reaching a 
maximum of 14% and usually less than 10%. However, 
Figure 7 clearly shows its relative contribution steadily 
increasing, hence it cannot be ignored indefinitely, 
especially if one expects to scale to tens of thousands of 
processes. 

Even when PVFS is optimized on BG/P, there will likely 
be configurations that are more efficient than others in 
terms of I/O. For example, 8 I/O nodes seems to be a sweet 
spot in terms of throughput. At 64 compute nodes per I/O 
node, this corresponds to 512 processes, 1 process per 
node. Also, it is known that PVFS does not perform well 
when the partition size per process becomes too small; 1 or 
2 MB seems to be a good target according to past 
experience, although MPI-IO optimizations can mitigate 
the impact of small partition sizes. 

With such reliance in this application on I/O rates, it is 
worthwhile to study the I/O performance in more detail, 
and to continue to reevaluate it as PVFS on BG/P becomes 
more mature. Figure 8 shows current read bandwidth for 
three dataset sizes: 3003, 6003, and 8003 voxels. In each 
case, the best throughput occurs at approximately 256-512 

 
Figure 7: Relative contribution to tframe of each of tio, 
trender,  and tcomposite  is shown. 

Figure 6: Comparison of tio, trender,  and tcomposite  is shown in 
terms of absolute frame time. 

 
Figure 5: Performance of BG/P on 300^3 downsampled 
dataset. 

 
Figure 8: Aggregate read I/O throughput is plotted for 
various data sizes and numbers of processes. 
 



processes, and the optimal partition size appears to be 
between 2-8 MB.  PVFS performs much better on larger 
data sizes than on small ones, as Figure 8 shows. More 
detailed tests will be required to confirm these results, once 
PVFS has been dialed-in on BG/P. The resulting 
throughput values reflect end-to-end I/O times, including 
file open and file close, not the raw time to perform the 
actual read. 

The full size supernova dataset is 8643 voxels, which we 
reduced slightly to 8003 for our final test. For our largest 
scale result thus far, an output image of 16002 pixels was 
rendered from 8003 voxels in a frame time of 
approximately 7 seconds. In this test, each time step is 2 
GB, or ! billion voxels, and each resulting image is 2.5 
Megapixels. 
 
5. Conclusions 
 
The Blue Gene architecture can be an appropriate platform 
for high quality software visualization algorithms such as 
classical direct volume rendering by ray casting. Its salient 
features with respect to this application are: large numbers 
of tightly connected cores, a flexible programming API 
(MPI), a high-bandwidth connection to the parallel I/O 
system (MPI-IO and PVFS), and the ability to connect via 
sockets to remote displays. Software rendering cannot 
produce better performance than graphics clusters for small 
to medium size problems, but if current trends in data size 
[26], [27] continue, massively parallel supercomputer 
software volume rendering may become a predominant 
method in the future.  

A closely related metric to data size is image resolution. 
In our tests, the image size is chosen such that the number 
of pixels in one dimension of the image is twice the number 
of voxels in one dimension of the volume, to satisfy the 
Nyquist Sampling Theorem.  

We believe that our research will prove useful for data 
sizes larger than 10003 voxels (several gigavoxels) in 
conjunction with image sizes larger than  20002 pixels 
(several megapixels). The method is also promising for in 
situ visualization [28], or in general when a very large 
dataset resides on the system already. As data sizes 
increase, transporting data between machines becomes non-
trivial. 

The relative cost of the three phases of the algorithm 
changes with the number of processes, although ultimately 
the application is I/O bound. There is a certain tension 
between applying enough processes to reduce the rendering 
time, but not so many as to force the I/O system to read 
many partitions of a very small size, which is inefficient. A 
similar trade-off, but to a lesser degree, exists between 
rendering and compositing. Therefore, it is unlikely that 
this method alone can effectively produce highly 
interactive performance, for example, 30 frames per 
second. It is more likely that its niche will be for very large 
data sets that cannot be accommodated by graphics 
clusters, and can produce frame times on the order of a few 
seconds for such data. 

Within the rendering kernel, performance tuning is still 
important. The ability to apply parallelism should augment, 
not replace, good algorithms, coding practices, and 
optimizations. Minimizing the number of processes by 
optimizing code using compiler flags, directives, and quad-

word alignment can speed up execution, so that larger, 
more efficient I/O partition sizes can be used among fewer 
processes. 

The spare capacity of the machine can be applied to the 
application in several ways. Prefetching of several frames 
through a multi-pipeline layout is one alternative. This 
produces two levels of parallelism; the first level is a gross 
division of the machine into, for example, four pipes, each 
pipe processing one frame. The second level of parallelism 
is the division of a pipe into, for example, 512 processes.  

The next approach for utilizing more of the machine 
capacity is to improve the quality of the rendering, for 
example to enable lighting and shading calculations. In the 
performance results, lighting was disabled, but Figure 1 
shows that very high quality images can result through the 
addition of lighting. On the 3003 dataset, lighting slowed 
down performance by approximately 50%. However, the 
cost of lighting will be less significant at higher process 
counts, because lighting is a part of the rendering cost.  

Another quality adjustment is the sample spacing along 
each ray. This is also adjustable and is set to twice the 
voxel spacing in these tests. However, slight reductions in 
sample spacing can increase performance significantly, but 
at the expense of small “holes” throughout the resulting 
image. However, this technique can be used as a type of 
level-of-detail reduction for improving interaction rates. 
 
6. Future Work 
 
We are continuing work to scale data size to gigavoxels and 
image size to megapixels, and to improve image quality 
through lighting and shading in our next tests. In order to 
do so, each of the three components of tframe,, tio, trender, and 
tcomposite, must be further improved. I/O performance relies 
mainly on improvements to the PVFS and I/O forwarding 
implementations on BG/P. Rendering performance can be 
further improved with code tuning and optimization.  

We are planning to experiment with tree-based 
compositing as a replacement for direct-send. This may 
include binary swapping per [20] as a way to balance the 
number of messages with the size of a message, and to keep 
more processes busy during the late stages of compositing. 
This also implies that several processes, instead of a single 
root process, will write the output image collectively to 
disk. This is similar to the way data is now being read from 
disk. In the case of streaming images, several sockets can 
transmit in parallel, similar to the way that the multi-pipe 
configuration now sends images. 

Besides propelling optimizations and algorithmic 
improvements, extending the scale of an application also 
flushes out implementation issues that may be hidden at 
smaller scales. While it can be painful to perform 
application testing on a machine still undergoing 
acceptance testing with a nascent parallel I/O 
implementation, in the long run it benefits both the 
application and systems researchers.  

For example, we recently discovered an MPI-2 
implementation issue at large numbers of nodes with the 
8643 dataset, forcing our current largest results to be 
performed at 8003. In the past, we have discovered another 
MPI-2 implementation bug and a BG/P memory allocation 
bug through this research. Likewise, several application 



errors were discovered when scaling to hundreds and 
thousands of processes. 

In the future we will also begin to study how this 
research can be extended to encompass adaptive mesh 
refined (AMR) time-varying datasets [29], [30]. Varying 
levels of spatial resolution encoded in AMR data provide a 
compromise between the rigidity of completely structured 
data, and the randomness of entirely unstructured data. This 
may significantly impact the initial setup time. This step 
was ignored up to now because it was a one-time cost; the 
structure did not change from one frame to the next. 
However, in the worst AMR case, each time step could 
have a different spatial layout. This could add tens of 
seconds to the frame time, without some method of rapidly 
restructuring the initial data structures. 

Another goal is to collate the performance data into a 
coherent model for predicting future performance. This 
model may take the form of a smooth, high-dimensional 
manifold, or a set of governing equations, or various rules 
and heuristics. The determination of what input criteria, 
such as processor speed, data size, number of processes, 
network bandwidth, memory bandwidth, aggregate I/O 
throughput, etc, should be included into such a model is an 
open question. The result should be a relatively simple-to-
use module that can analyze a parallel volume rendering 
problem and suggest an optimal configuration and predict 
its performance. 

Finally, one of our long-term goals is to study a 
supercomputer architecture can be used to support 
interactive rendering. The research so far has not included 
any elements of interactivity, and performance data reveals 
that reaching interactive rates is difficult because of the 
tradeoffs between tio, trender,  and tcomposite . The next steps 
toward interactive rates may include LOD rendering as well 
as local view interpolation at the display machine(s). The 
ideal configuration may be the supercomputer and the 
graphics machine(s) sharing responsibilities in a client-
server architecture.  
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